Synthesis of 13,14-Dialkylpicenes and Hindered Rotation of the Alkyl Groups as Studied by Dynamic NMR spectroscopy and Molecular Mechanics Calculations

J. Edgar Anderson* and Bernt R. Bettels
Chemistry Department, University College, Gower Street, London WC1E 6BT

The synthesis of four 13,14 -dialkylpicenes is reported. NMR spectra at various temperatures and molecular mechanics calculations indicate that while the α-carbon atoms are near the aromatic plane, the remaining carbon atoms are above or below the plane, the two substituents being trans in that way. There is a barrier to rotation of alkyl groups through the plane of the ring to interconvert updown and down-up conformations of $11-12 \mathrm{kcal} \mathrm{mol}^{-1}$, which is dependent on the substituent.

The most significant feature of the conformational analysis of substituted alkyl benzenes, which occur widely in organic chemistry, is likely to be the steric interaction between the phenyl group and the alkyl sidechain. For a primary alkyl group $\mathrm{CH}_{2} \mathrm{X}$, if X is large, analysis seems simple-the ground state will have the $\mathrm{CH}_{2}-\mathrm{X}$ bond near to perpendicular to the aromatic plane, and there will be a barrier to rotation about the phenyl- CH_{2} bond to move X from one side of the plane to the other. Even when $\mathrm{X}=\mathrm{t}$-butyl, ${ }^{1}$ the barrier to rotation of the $\mathrm{CH}_{2} \mathrm{X}$ group is only about $4.3 \mathrm{kcal} \mathrm{mol}^{-1}$. \dagger Simple substitution raises the barrier slightly as the series (1)-(4) indicates (see the Figure), but the effect is small, since a single substitution leaves one ortho-position unhindered, so rotation can take place. Substitution of both ortho-positions ${ }^{4,5}$ is required before high barriers to $\mathrm{CH}_{2} \mathrm{X}$ rotation are found; compound (5) is an example. ${ }^{3,4}$

(1) 4.3^{1}

(2) $5.3^{2,3}$

(3) 5.8^{3}

(4) 7.4^{3}

(5) $16.2^{3,4}$

Figure. Rotational barriers/kcal mol ${ }^{-1}$.
Conformational analysis of aromatic systems is complicated by the fact that as congestion increases, abandonment of aromatic planarity may be more attractive energetically than the more usual distortions of simpler molecules. Phenanthrenes with $\mathrm{CH}_{2} \mathrm{X}$ substituents in the 4 and/or 5-positions reflect a delicate conformational balance. 4-Methylphenanthrene appears to be planar while the 4,5-dimethyl compound has these groups twisted 33° on either side of the plane. ${ }^{6}$ In the former case, with the methyl group in the plane, the methyl rotational barrier in the solid state ${ }^{7}$ is $5.1 \mathrm{kcal} \mathrm{mol}^{-1}$, much higher than in the latter case, 2.3 or $2.7 \mathrm{kcal} \mathrm{mol}^{-1}$. In the compound (6), substituents are displaced on either side of the mean plane of the

(6)

(7)

(8)
aromatic system ${ }^{8-10}$ and there is a high barrier of 18.1 kcal mol^{-1} to interconversion of enantiomeric structures which can be represented diagramatically as (7) and (8).

We now report a new series of compounds, the $13,14-$ dialkylpicenes (9), which appear to be planar, and which by combining aspects of ortho-substitution and of the phenanthrene framework, have a particularly high barrier to $\mathrm{Ar}-\mathrm{CH}_{2} \mathrm{X}$ rotation.

Results and Discussion

Synthesis.-13,14-Dialkylpicenes (9) have not to our knowledge been previously reported, but are readily prepared by oxidative photocyclisation of bis-(1-naphthyl)dialkylethylenes (10) which are synthesised by titanium-mediated dimerisation of 1-alkanoylnaphthalenes. By this means, (9a-d) have been obtained as sharply melting solids, see the Experimental section.

Dynamic NMR Spectroscopy.-The proton NMR spectrum of the $\alpha-\mathrm{CH}_{2}$-group of ($9 \mathrm{~b}-\mathrm{d}$) is temperature-dependent, see Table 1. For the ethyl compound (9b), this signal appears as a spin-coupled quartet at $50^{\circ} \mathrm{C}$. Broadening of the CH_{2} signal occurs as the temperature is lowered until about $-27^{\circ} \mathrm{C}$, when the signal splits. It appears as two multiplets at $-55^{\circ} \mathrm{C}$, the AB part of an ABX_{3} spectrum. Irradiation of the methyl-group frequency at this temperature reduces the methylene-group spectrum to an AB system $\left(\delta_{\mathrm{AB}}=287 \mathrm{~Hz}\right.$ at $400 \mathrm{MHz}, J_{\mathrm{AB}}=$

[^0]Table 1. NMR data for 13,14-dialkylpicenes (9a-d).

${ }^{a}$ Aromatic proton and carbon-13 signals may be assigned by referring to the spectrum of the parent picene. ${ }^{22 b}$ For each of (9 a-d), values of aromatic chemical shifts were identical to within 0.1 ppm , except that for (9a), where a signal at $\delta 132.2$ replaces that at $\delta 136.6$.

(9) a; $R=H$
b; $R=\mathrm{CH}_{3}$
c; $R=\left[\mathrm{CH}_{2}\right]_{5} \mathrm{CH}_{3}$
d; $R=\left[\mathrm{CH}_{2}\right]_{9} \mathrm{CH}_{3}$
$13 \mathrm{~Hz})$. On the basis of a coalescence of the A and B parts of the decoupled signal at $-27^{\circ} \mathrm{C}$, the rate of interconversion $k=$ $\pi\left[\left(\delta^{2}+6 J^{2}\right) / 2\right]^{\frac{1}{2}}$ is $641 \mathrm{~s}^{-1}$ at that temperature, whence the free energy of activation for the process is $11.1 \mathrm{kcal} \mathrm{mol}^{-1}$. All other proton NMR signals and all carbon-13 NMR signals for (9b) are essentially temperature independent.

The trans-conformation appears to be less crowded than any cis-one and should thus be preferred. While nothing in the NMR spectrum proves this, molecular mechanics calculations reported below confirm this relative stability.

Similar behaviour is observed in the corresponding CH_{2} signals of (9c) and (9d). This is summarised in Table 1, and barriers to the conformational process are derived. Changes in other methylene-group signals in these latter compounds should take place, but could not be clearly distinguished owing to signal overlap. In none of the three compounds was there any
sign of a second set of signals at low temperature which might be attributable to a second, cis kind of conformation.

Molecular Mechanics Calculations.-We used Allinger's MMP2 program ${ }^{11}$ to calculate stable conformations of compound (9b), and found the trans-planar aromatic system with one methyl group on either side of the plane, represented diagrammatically as (11), to be preferred. Rather less stable is

(11)

(12)
the cis-conformation (12), while conformations with one hydrogen and the methyl of either ethyl group on the same side of the plane are all at least a further $6 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable. Table 2 summarises other relevant details of the two stable conformations. The differences in interaction of groups cis and trans lead to the characteristic differences in bond angles and bond lengths etc. shown in Table 2 and need not be referred to further in this text. Insofar as molecular mechanics calculations have satisfactorily predicted the non-planarity of 4,5 -dimethylphenanthrenes, ${ }^{7}$ we feel that the present prediction of an essentially planar system for the trans-conformation of diethylpicene, see Table 2, is credible.

Inspection of models of (9b) and non-optimised calculations suggests that interconversion of enantiomeric trans-conform-

Table 2. Selected molecular mechanics calculated parameters for trans and cis conformations of 13,14-diethylpicene ${ }^{a}$.

	trans	cis
Bond lengths/ \AA		
$\mathrm{C}_{13}-\mathrm{C}_{14}$	1.376	1.375
$\mathrm{C}_{13}-\mathrm{C}_{13}{ }^{2}$	1.531	1.531
Bond Angles/ ${ }^{\circ}$		
$\mathrm{C}_{14}-\mathrm{C}_{13}-\mathrm{C}_{13 \alpha}$	116.3	116.3
$\mathrm{C}_{12 \mathrm{~b}}-\mathrm{C}_{13}-\mathrm{C}_{13 \alpha}$	120.6	120.6
Dihedral Angles/ ${ }^{\circ}$		
$\mathrm{C}_{12 \mathrm{a}}-\mathrm{C}_{12 \mathrm{~b}}-\mathrm{C}_{13}-\mathrm{C}_{13 \alpha}$	-3.7	$-8.5-6.5$
$\mathrm{C}_{13 \alpha}-\mathrm{C}_{13}-\mathrm{C}_{14}-\mathrm{C}_{14 \alpha}$	5.7	11.9
$\mathrm{C}_{14}-\mathrm{C}_{13}-\mathrm{C}_{13}-\mathrm{H}_{13 \mathrm{~B}}$	130.5	$136.5-115.2$
$\mathrm{C}_{14}-\mathrm{C}_{13}-\mathrm{C}_{13}-\mathrm{H}_{13} \mathrm{~B}$	29.2	$37.7-5.8$
$\mathrm{C}_{14}-\mathrm{C}_{13}-\mathrm{C}_{13}-\mathrm{C}_{13 \mathrm{\beta}}$	-95.8	$-90.5108 .3$

Conformational Energies/
kcal mol $^{-1}$

Compression	3.8331	3.8256
Bending	11.4439	11.3205
Stretch-bend	0.4397	0.4280
van der Waals (1,4)	17.8063	17.8585
van der Waals (other)	8.3462	8.2383
Torsional	-38.9117	-36.1511
Dipole	0.1205	0.1183
Total	3.0780	5.6381
Relative steric energy	0.0	2.5601

Aromatic non-planarity $\Delta, /^{o b}$
Rings A-E $\quad 0.7,1.0,1.4,1.0,0.7 \quad 0.8,1.4,2.5,1.8,1.4$
${ }^{a}$ For numbering see diagram of (9). ${ }^{b}$ The mean deviation from 0° for the six endocyclic $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ dihedral angles for each ring.
ations i.e., up-down with down-up takes place via the cisconformation reached by a rotation of one methyl group through the gap between the two ethyl groups, the 13-14 gap, rather than the 12-13 gap or the 14-1 gap. Simulation of this process by use of the drive option of molecular mechanics leads to energies much higher than are found experimentally. This suggests that successful simulation requires simultaneous management of the rotation of both ethyl groups, which was considered too laborious. The rotation of both methyl groups is probably much restricted in the transition state, which should lead to a negative entropy of activation, and thus, an experimental enthalpy of activation somewhat lower than the experimental free energy of activation of $11.1 \mathrm{kcal} \mathrm{mol}^{-1}$.

Our studies have been limited to a set of picenes with primary alkyl substituents. During rotation of a chain through the gap between the 13 -and 14 -positions, the β-atom is most involved in the hindrance to rotation. The fact that the barriers for the hexyl and decyl compounds (9c) and (9a) are not much greater than that of (9b) suggests that the γ-carbon is directed away from interaction with the second alkyl group. A second β-substituent should lead to marked reductions in the rate of interconversion, and perhaps to configurationally stable up-down and down-up enantiomers of the trans conformation.

Experimental

NMR spectra were recorded for $c a .0 .05 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions in $\mathrm{CF}_{2} \mathrm{Cl}_{2}-\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (4:1) on a Varian VXR400 spectrometer with an operating frequency of 400 MHz for protons. FIDs were unweighted, acquisition times were 2 s , and at least 8 data points per Hz were used.

Picenes were obtained as components of the mixture of

(14)
(13)

(15)
(16)

(17)

$$
\alpha N=1 \text {-naphthyl }
$$

products from the photolysis of mixtures of diasteroisomeric 1,2-dialkyl-1,2-bis-(1-naphthyl)ethylenes (10). Ethylenes in hexane or cyclohexane as solvent with added iodine were oxygenated ${ }^{12}$ and irradiated for periods that varied from 20 \min to 14 h .

The photoproduct is a mixture of compounds the composition of which varies unpredictably with reaction conditions. The ethyl compound will serve as an example. Preparative TLC or GLC leads to several fractions not all of which were pure.

Compounds (13) (mixture of stereoisomers) then (14) (apparently a single diastereoisomer) eluted, which follow the unchanged trans-isomer of the starting alkene (10b). The first polycyclic alkene to elute is (15), identified from the simplicity of its proton and carbon-13 NMR spectra, followed by the cisalkene (10b). Then the picene (9b), and two structural isomers of (9b) follow, which both have only six kinds of aromatic proton, but which show one and two kinds of ethyl group, respectively, in the NMR spectrum and so may be compounds (16) and (17). Formation of anthracenes i.e. (15)-(17), as well as phenanthrenes i.e. (9) is not unprecedented, ${ }^{13.14}$ nor is the migration of the naphthalene substituent from the α - to the β-position, ${ }^{15}$ as implied by structures (15) and (17).
By such means, compounds (9a-d) were obtained. 13,14Dimethylpicene (9a), m.p. $274{ }^{\circ} \mathrm{C}$ (Found: C, 93.95 ; H, 5.9. $\mathrm{C}_{24} \mathrm{H}_{18}$ requires C, $94.08 ; \mathrm{H}, 5.92 \%$). 13,14-Diethylpicene (9 b), m.p. $197^{\circ} \mathrm{C}$ (Found: C, $93.35 ; \mathrm{H}, 6.65 . \mathrm{C}_{26} \mathrm{H}_{22}$ requires C , 93.37 ; H, 6.63\%). 13,14-Di-n-hexylpicene (9c), m.p. $232-233^{\circ} \mathrm{C}$ (Found: C, 91.15; H, 8.6. $\mathrm{C}_{34} \mathrm{H}_{38}$ requires C, $91.43 ; \mathrm{H}, 8.57 \%$). 13,14-Di-n-decylpicene (9d), m.p. 250-255 ${ }^{\circ} \mathrm{C}$ (Found; C, 89.5; $\mathrm{H}, 10.0 . \mathrm{C}_{42} \mathrm{H}_{54}$ requires $\mathrm{C}, 90.26 ; \mathrm{H}, 9.74 \%$).
Ethylenes (10) were obtained from ketones (11) by use of titanium(0), obtained from titanium tetrachloride by reduction
with lithium aluminium hydride ${ }^{16,17}$ as a catalyst. Ketones were obtained from the corresponding alcohols by oxidation. ${ }^{18}$ These alcohols were obtained from 1-bromonaphthalene and the appropriate aldehyde using n-butyl-lithium in solution. ${ }^{19-21}$

References

1 J. E. Anderson, H. Pearson, and D. I. Rawson. J. Chem. Soc., Chem. Commun., 1973, 95; J. E. Anderson, D. Casarini, and L. Lunazzi, J. Org. Chem., 1989, in the press.
2 J. E. Anderson and D. J. D. Barkel, J. Chem. Soc., Perkin Trans. 2, 1984, 1053.
3 J. E. Anderson, D. J. D. Barkel, and F. S. Jorgensen, J. Chem. Soc., Perkin Trans. 2, 1988, 199.
4 D. T. Dix, G. Fraenkel, H. A. Karnes, and M. S. Newman, Tetrahedron Lett., 1966, 517.
5 C. A. Cupas, J. M. Bollinger, and M. Haslanger, J. Am. Chem. Soc., 1968, 90, 5502.
6 F. Imashiro, A. Saika, and Z. Taira, J. Org. Chem., 1987, 52, 5727.
7 K. Takegishi, F. Imashiro, T. Terao, and H. Saika, J. Chem. Phys., 1984, 80, 1089.
8 R. Munday and I. O. Sutherland, J. Chem. Soc. B, 1968, 80.
9 R. N. Armstrong, H. L. Ammon, and J. N. Darnow, J. Am. Chem. Soc., 1987, 109, 2077.

10 A. Mannschreck, E. Gmahl, T. Burgmeister, F. Kastner, and V. Sinnwell, Angew. Chem., Int. Ed. Engl., 1988, $27,270$.
11 N. L. Allinger and H. L. Flanagan, J. Comput. Chem., 1983, 4, 399.
12 F. B. Mallory and C. W. Mallory, Org. React., 1984, $30,1$.
13 S. D. Cohen, M. V. Mijovic, and G. A. Newman, J. Chem. Soc., Chem. Commun., 1968, 722.
14 P. R. West, S. K. Chaudhury, J. M. Vernon, and R. H. Mitchell, J. Chem. Soc., Chem. Commun., 1984, 613.
15 J. E. Anderson, D. J. D. Barkel, and J. E. Parkin, J. Chem Soc., Perkin Trans 2, 1987, 955.
16 R. Dams, M. Malinowski, I. Westdorp, and H. Y. Geise, J. Org. Chem., 1982, 47, 248.
17 J. E. McMurry, M. P. Flemming, K. L. Kees, and L. R. Krepski, J. Org. Chem., 1978, 42, 3255.
18 E. J. Corey and J. W. Suggs, Tetrahedron Lett., 1975, 2647.
19 P. D. Bartlett and E. B. Lefferts, J. Am. Chem. Soc., 1955, 77, 2804.
20 H. Gilman, C. G. Brammer, and R. U. Ingham, J. Org. Chem., 1957, 22, 685.
21 R. G. Jones and H. Gilman, Org. Reactions, 1951, 6, 339.
22 'Spectral Atlas of Polycyclic Aromatic Compounds,' vol. 2, Kluwer, Dordrecht, 1988.

Paper 0/00454E
Received 31st January 1990
Accepted 7th March 1990

[^0]: $\dagger 1 \mathrm{cal}=4.182 \mathrm{~J}$.

